Afterload

The pressure that the ventricle (right or left) must overcome to eject blood (i.e. the left ventricle pumps against aortic diastolic pressure and systemic vascular resistance.

The resistance to the ejection of blood by the ventricle is called afterload. The left ventricle, for example, must create sufficient pressures during systole to overcome diastolic arterial pressure and systemic vascular resistance before any blood is ejected. While preload enhances contractility and stroke volume, high pressures in the arterial vessels during ventricular end diastole is inversely related to stroke volume (see Figure 2.4).

While systemic vascular resistance is not easily determined without a pulmonary artery catheter, diastolic blood pressure is easily measured. So while an accurate estimate of afterload is often not clinically practical, a patient’s diastolic pressure provides a good indication of the resistance the left ventricle must overcome (afterload). In general, the higher the diastolic pressure, the higher the afterload.

And the higher the afterload, the more difficult a job it is for the left ventricle to eject sufficient stroke volumes. Similar to preload, increased afterload causes increased myocardial workload, a factor to consider for those with advanced cardiac disease and/or cardiac ischemia.

The explanation for the walls of the left ventricle being three times the thickness of the walls of the right ventricle rests squarely with the concept of afterload. At birth, the wall thickness of the right and left ventricle are equal. Soon after birth, though, the pressures in the systemic circulation begin to surpass those of the pulmonary system. The lower pressures (typically about 24/8 mm Hg) of the pulmonary system mean a lower afterload for the right ventricle than the left ventricle. As a result, the muscle mass required of the right ventricle is also less than the left ventricle.

Afterload is also tied to cardiac hypertrophy. As the resistance to chamber contraction increases, the chamber adapts to this increased workload with the accumulation of increased fibre within the myocardial cells. This makes the cells stronger but also bulks up the cells, ultimately resulting in chamber hypertrophy. Unfortunately, these thicker chamber walls can be associated with additional complications such as decreased contractility, reduced stroke volume, and cardiac dysrhythmias.

Figure 2.4 Afterload and Cardiac Output

As the resistance to the ejection of blood from the left ventricle increases, stroke volume tends to decrease as does cardiac output. Perhaps as important, cardiac workload increases with increases in afterload.

1. Six Second ECG Guidebook (2012), T Barill, p. 34-35, 189

Our new 12 Lead ECG SIM Deck is active!

We're planning a scheduled maintenance period.

Our website will be unavailable on Wednesday March 13, 2024 starting at 9:00am (PDT). We anticipate this will take about 1 hour.
Thank you for your understanding.

The SkillStat Team

×
  Six Second ECG Intensive Six Second ECG Mastery 12 Lead ECG & ACS 12 Lead Advanced
Prerequisite

None

None

Any Six Second ECG Course

12 Lead ECG & ACS

Time Frame

8 hours (1-day Course or 2 evenings)

20 hours 3-day Course

8 hours 1-day Course

8 hours 1-day Course

Tuition

$275

$675

$275

$275

Completion Card
Exam and Certification
SkillStat 2U-able
Reference materials included
Dynamic ECG rhythm interpretation
Static ECG rhythm interpretation
Clinical Impact Mapping
Acute Coronary Syndromes Overview
Acute Coronary Syndromes In-Depth
ST Segment & T Wave Differential
Identify Bundle Branch Blocks
15 | 18 Lead View Mapping
Electrical Axis
R Wave Progression
Left Bundle Branch Blocks with ACS
Atypical Findings
Acute Non-Ischemic Disease Conditions
Special Cases

•-included;     ○-reviewed
×