PR Interval

The time and interval measured from the beginning of the P wave to the beginning of the QRS; should be called the PQ interval; normal PR interval is 0.12-0.20 seconds.

The PR interval is measured from the start of the P wave to the start of the QRS complex. While it might appear obvious that this is indeed a PQ interval, a Q wave is not always present on an ECG tracing. For consistency, the term PR interval has been adopted whether a Q wave exists or not.

The PR interval can provide clues to both the location of the originating impulse and the integrity of the conduction pathways of the heart. A PR interval longer than normal (greater then 0.2 seconds) suggests that conduction is abnormally slow through the AV junction. This phenomenon is called first degree AV block. A PR interval shorter than normal (less than 0.12 seconds) occurs commonly with junctional rhythms (the impulse begins somewhere in the AV junction) because part of the conduction pathway – the atria and part of the AV junction – is bypassed and thus shortened.

The PR interval covers the time taken for the impulse to travel from the SA node through the atria and the AV junction through to the Purkinje network. Most of the PR interval is taken by the slow conducting AV junction. Changes to the PR interval often points to the AV junction. A normal PR interval is 0.12-0.20 seconds, which is the equivalent to 3-5 small squares (3-5 mm) on ECG paper.

If an ECG shows P wave, QRS complex – P wave, QRS complex – P wave, QRS complex – atrial depolarization, ventricular depolarization until the cows come home, a rather important relationship between the atria and the ventricle is revealed. If the P wave is consistently followed by a QRS complex across a consistent PR interval, this is strong evidence that the originating impulse is supraventricular. A consistent PR interval is often sufficient to declare that this is a supraventricular rhythm.

Figure 4.12 The P Wave, PR Segment and PR Interval

In Figure 4.12, several ECG components are labelled. Note that a waveform is produced when the electrical potential of cardiac cell membranes change. During atrial depolarization, the atrial cell membranes quickly become more positive, producing a P wave. The baseline or isoelectric line represents nothing more than an absence of voltage change to the cardiac cells.

1. Six Second ECG Guidebook (2012), T Barill, p. 80-82, 112, 201

Our new 12 Lead ECG SIM Deck is active!

We're planning a scheduled maintenance period.

Our website will be unavailable on Friday, May 31, 2024 starting at 12:00pm (PDT). We anticipate this will take about 1 hour.
Thank you for your understanding.

The SkillStat Team

×
  Six Second ECG Intensive Six Second ECG Mastery 12 Lead ECG & ACS 12 Lead Advanced
Prerequisite

None

None

Any Six Second ECG Course

12 Lead ECG & ACS

Time Frame

8 hours (1-day Course or 2 evenings)

20 hours 3-day Course

8 hours 1-day Course

8 hours 1-day Course

Tuition

$275

$675

$275

$275

Completion Card
Exam and Certification
SkillStat 2U-able
Reference materials included
Dynamic ECG rhythm interpretation
Static ECG rhythm interpretation
Clinical Impact Mapping
Acute Coronary Syndromes Overview
Acute Coronary Syndromes In-Depth
ST Segment & T Wave Differential
Identify Bundle Branch Blocks
15 | 18 Lead View Mapping
Electrical Axis
R Wave Progression
Left Bundle Branch Blocks with ACS
Atypical Findings
Acute Non-Ischemic Disease Conditions
Special Cases

•-included;     ○-reviewed
×